高增益红外单光子探测技术研究进展(特邀)

吴静远1,刘肇国2,张 彤2

(1. 东华大学理学院光电科学与工程系,上海 201620;

2. 东南大学 电子科学与工程学院 信息显示与可视化国际合作实验室, 江苏 南京 210096)

摘 要:超灵敏单光子探测是光量子信息和量子调控领域发展的关键技术,实现高效率、超灵敏、低功 耗以及低成本的单光子探测具有重要的科学意义和应用价值。与可见光波段的 Si 基单光子探测器相 比,红外响应单光子探测器目前在成本和性能方面都存在较大差距,探索基于新材料和新机制的红外 单光子探测技术是光电探测领域发展的迫切需求。近年来,低维材料由于其独特的物化性质,为研制 高增益、室温工作和宽波段响应的探测器提供了新的可能,高性能低维材料光电探测技术也成为了当 前红外探测领域的研究热点。文中首先回顾了传统雪崩类半导体红外光电探测器的基本原理,在此基 础上,介绍了基于新型低维材料的雪崩机制光电探测技术的最新进展,之后讨论了光诱导栅压效应型 光电探测器件的新型光增益放大机制,并描述了在该工作机制下相关低维材料红外探测器的基本结构 和性能表现。最后展望了高增益红外单光子探测技术的未来发展方向和面临的挑战。 关键词:单光子;雪崩机制;低维材料;红外探测器

中图分类号: TN215 文献标志码: A DOI: 10.3788/IRLA20211016

Research progress of infrared single-photon detection with high gain (*Invited*)

Wu Jingyuan¹, Liu Zhaoguo², Zhang Tong²

 (1. Department of Optoelectronic Science and Engineering, College of Science, Donghua University, Shanghai 201620, China;
2. Joint International Research Laboratory of Information Display and Visualization, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China)

Abstract: Ultra-sensitive single-photon detection is a key technology for the development of optical quantum information and quantum manipulation. It is of important scientific significance and application value to realize high-efficiency, high-sensitivity, low-power and low-cost single-photon photodetectors. There is still a large gap between visible single-photon detector based on silicon and infrared ones in terms of the cost and performance. Exploring the technology of infrared single-photon detection with novel materials and mechanism has become the urgent needs in the field of photodetection. In recent years, low-dimensional materials have offered a new possibility for realizing high-gain, room-temperature and broad-band photodetectors due to their unique physical and chemical properties. The research on the low-dimensional materials based photodetectors with good performance has also become a hot topic in the field of infrared photodetection. In this review, the basic principles of traditional avalanche infrared photodetectors were introduced firstly. On this basis, the latest development of avalanche devices based on novel low-dimensional materials was summarized. Then the new gain amplification mechanism of the photodetector based on photogating effect was discussed and the structure as well as the

收稿日期:2020-11-03; 修订日期:2020-12-14

基金项目:国家自然科学基金 (62005042, 61875241); 上海市青年科技英才扬帆计划 (20YF1401400); 中央高校基本科研业务费专项资金 (2232020D-44)

performance of the devices were reviewed. Finally, the future developing directions and challenges of the infrared single-photon detection technology were prospected.

Key words: single photon; avalanche effect; low-dimensional materials;

0 引 言

单光子探测是一种光子尺度下的极限灵敏光电 探测技术,在量子通信、激光雷达、精密测量以及超 灵敏探测等前沿学科领域发挥着重要作用[1-4],尤其 随着量子信息科学领域的迅猛发展,极大地推动了高 性能单光子探测技术研究,部分可见光硅基单光子探 测器已经实用化并得到广泛应用。然而,与可见光波 段的探测器相比,红外单光子探测器由于探测材料的 红外光吸收限制、制备工艺复杂以及热噪声影响,在 探测效率、灵敏度等性能参数上仍有很大的提升空 间。拓展单光子探测器的响应波长范围具有显著的 研究价值[5-6],例如,低损耗光纤通讯窗口通常位于红 外波段, 目近红外单光子探测器在量子密钥分发领域 具有广阔的应用前景;此外,在自由空间的激光测距 等领域,通过拓展响应波长可以显著提高人眼安全阈 值,更适合于主动探测成像领域等。因此,红外超灵 敏探测也是目前光电检测技术领域的研究热点。

主流的单光子红外探测器主要分为三类:雪崩效 应器件、频率上转换器件以及低温超导器件。其中雪 崩效应光电二极管工作时通常需要施加几十伏到上 千伏的驱动电压,利用巨大的载流子倍增增益实现室 温单光子探测[7-8]。频率上转换器件则利用非线性光 学晶体将红外光转换为可见光^[9],进而通过可见光硅 基单光子探测器件进行探测,但它普遍存在较大的非 线性噪声等问题。超导单光子探测器主要包括超导 纳米线单光子探测器[10-11]、超导相变边缘探测器[12] 以及动态电感探测器[13]等,尽管超导类探测器件在 探测效率、暗计数以及宽谱响应等性能方面超越了传 统半导体单光子探测器,但由于它严苛的极低温工作 条件(小于3K),使得系统重量和体积剧增,不利于集 成化,且成本昂贵,限制了超导单光子探测器的实际 应用。总而言之,目前各类红外单光子探测技术仍面 临着关键瓶颈问题需要突破,发展室温工作、高效 率、低功耗和集成化的单光子红外探测器需求十分 迫切。

文中总结了基于高增益放大机制的红外单光子 探测技术研究进展,在传统半导体雪崩类红外光电探 测器工作机制和器件性能介绍的基础上,主要讨论了 基于新兴的低维材料(如一维纳米线和二维材料)的 高增益光电探测机制,总结了基于雪崩机制的低维材 料光电探测器发展现状,并分析了这些低维材料器件 相比于体材料的潜在优势,此外介绍了基于光诱导栅 压效应的单一低维材料和异质结复合体系光电探测 器的结构和性能,最后展望了基于低维材料的超灵敏 红外探测技术的未来研究方向。

infrared photodetector

1 传统半导体雪崩效应单光子探测技术

1.1 工作原理

雪崩光电二极管是目前最成熟的红外单光子探 测器结构,它是基于内光电效应和内部电子碰撞电离 增益机制实现超灵敏探测^[5],如图1所示,雪崩光电二 极管通常由 p-n 结构成,并工作在反向偏置电压条件 下,当反向偏压大于器件的击穿电压时,耗尽层中的 光生电子-空穴对被加速获得足够动能,通过与晶格 碰撞电离实现电子空穴对的倍增,这种雪崩链式效应 使得探测器内部电信号急速放大,此时倍增因子趋于 无穷大,该过程也被称为盖革模式(Geiger mode),是 实现单光子计数的必要条件。然而由于盖革模式下 器件雪崩效应无法自行停止,因此需要通过设计外部 淬灭电路来控制器件的雪崩过程。

1.2 半导体雪崩类红外单光子探测器

通常红外雪崩二极管单光子探测器根据半导体 带隙要求采用 Ge 或 InGaAs 材料制备, Ge 的极限响 应波长为1.8 µm,但其光电二极管背景噪声非常大, 与 Ge 相比, InGaAs 作为直接带隙半导体, 它的红外 吸收系数更大,因此探测效率更高,且噪声更小,尤其 适合工作在1550 nm 通信窗口^[14]。最常见的红外雪崩 二极管通常由 InGaAs/InP 异质结构成, 其中 InGaAs 作为吸收层产生载流子, InP 为倍增层实现载流子的 碰撞电离,此外在吸收层和倍增层中会插入多级过渡 层以实现电场的平滑过渡。对于单光子探测器来说, 探测效率 (Photon Detection Efficiency, PDE) 和暗计数 (Dark Count Rate, DCR) 是关键性能指标,目前商用的 InGaAs/InP 红外雪崩光电探测器的 PDE 仅为 20%. DCR 约为 100 kHz (在 1 550 nm 波长处), 性能远低于 红外超导探测器。近年来,研究人员围绕红外半导体 雪崩探测器的结构设计、制备工艺以及测试电路方面 开展了大量的研究工作以提升器件性能^[3, 15-16]。

单光子探测器的 PDE 由器件的耦合效率、吸收效率以及雪崩碰撞产生概率等因素共同决定, 最近,针对 PDE 改善问题,中国科学技术大学 Fang 等 人对 InGaAs/InP 雪崩光电探测器进行了结构优化(见 图 2(a))^[16],通过添加介质-金属反射层提升了器件对 1550 nm 波长入射光子的吸收率,同时利用单片集 成读出电路提取微弱的雪崩信号,并抑制寄生电 容,最终器件室温下的 PDE 最高达到 60.1%, DCR 为 340 kHz (见图 2(b))。

尽管通过结构优化和电路设计等方法在传统半 导体红外雪崩探测器的性能方面已取得一些进步,但 由于后脉冲效应,即材料缺陷俘获载流子再次引发雪 崩击穿效应的影响,使得器件的 DCR 难以进一步降 低 (通常在 100 kHz 量级)^[17]。随着纳米技术的发展, 研究人员开始尝试采用制备基于半导体低维纳米结 构的雪崩光电探测器,有望在保持高增益的同时降低 暗噪声,此外,纳米结构光电探测器具有更易于集成 化和小体积的优点,满足红外光电探测器的发展趋 势。下文针对一维纳米线和二维材料雪崩光电探测 器的最新研究进展分别进行了介绍。

图 2 (a) InGaAs/InP 雪崩光电探测器结构示意图; (b) 器件暗计数和 探测效率性能参数, 插图为探测效率为 50% 时的有效门宽^[16]

 Fig.2 (a) Schematic diagram of the InGaAs/InP avalanche photodetector;
(b) Normalized DCR and PDE performance of the photodetector. The inset plots the effective gating width measurement with 50% PDE^[16]

2 低维材料雪崩类探测器

2.1 一维纳米线雪崩光电探测器

一维纳米线由于较大的表面积-体积比以及亚波 长直径尺寸展现出独特的物理性质,为高增益以及偏 振敏感的光电探测带来了新的机遇,而且纳米线可以 与入射光发生强耦合显著提升光吸收,并通过改变纳 米线的尺寸形貌和组分对光吸收进行调控,非常有潜 力实现室温红外探测^[18-21]。早在 2006 年,哈佛大学 C. M. lieber 课题组首次提出了由 Si-CdS 纳米线构成 的纳米级光电倍增二极管^[18],器件探测光子数小于 100,且具有亚波长空间分辨率,十余年来,研究人员 通过探索基于不同半导体材料的纳米线以及优化纳 米线阵列的形貌和结构,从而提升了单光子探测性能。

2019年,美国加州大学 Hyunseok Kim 等人制备 了工作在盖革模式下的垂直纳米线阵列雪崩探测器 (见图 3)^[21],纳米线中 InGaAs 层为吸收层,GaAs 为倍 增层,每个雪崩探测器包含 4 400 根纳米线,由于每根 纳米线单独产生雪崩倍增过程,因此与体材料相比, 该器件的后脉冲效应影响显著减小,最终优化的结果 是器件的 DCR 低至 10 Hz,时间抖动小于 113 ps,这 表明利用一维纳米线结构有望直接实现高性能 InGaAs 红外雪崩光电探测器,而不需要复杂的淬灭电路设 计,但该器件仍需要低温制冷的工作条件。为了提高 器件的工作温度,S.J. Gibson 等人报道了采用锥形 InP 纳米线 p-n 结阵列,实现了室温下高效单光子探测^[22],

- 图 3 (a) InGaAs-GaAs 雪崩探测器在不同温度下的暗计数, 插图为 器件结构示意图, 器件由 InGaAs 吸收层、GaAs 倍增层和 InGaP 钝化壳层组成; (b) 纳米线生长过程中的扫描电镜图像, 比例尺为 500 nm^[21]
- Fig.3 (a) Measured DCR at different temperatures of InGaAs-GaAs avalanche photodetector. The inset shows the schematic drawing of device composed of InGaAs absorption layer, GaAs avalanche layer, and InGaP passivation shell; (b) SEM images of nanowire growth after each layer. Scale bar 500 nm^[21]

器件的增益高达 10⁵,时间抖动小于 20 ps,并且通过 对 InP 纳米线大小和形貌的设计优化,探测器在紫外-近红外宽光谱 (450~900 nm)范围内具有几乎一致的 探测效率,内量子效率超过 70%。

上述工作充分反映了低维半导体纳米线结构在 红外单光子探测领域的应用潜力,与一维超导纳米线 单光子探测器相比,基于雪崩增益机制的半导体纳米 线探测器的工作温度显著提升,有望实现兼具室温工 作、高效率、低噪声和快速响应等优异性能的单光子 探测,通过选择适当纳米线材料以及设计阵列周期, 能够进一步拓展探测器的响应波长范围和提升器件 性能。

2.2 二维材料雪崩光电探测器

二维材料由于其独特的层状结构和能带特征,近 年来在光电探测领域得到了广泛关注,但目前将二维 材料应用于雪崩光电器件的相关研究刚刚起步^[23], 二维材料雪崩光电探测器的优势在于由于其原子级 厚度性质,所需要的碰撞电离击穿电压远小于三维半 导体材料,此外,通过外场调控充分耗尽二维材料中 的载流子,因此能够抑制器件的暗噪声。最早研 制的二维材料雪崩光电探测器主要工作在可见光波 段^[24-25],采用的材料包括二维 InSe 以及 MoS₂等,不 同于传统半导体构建的 p-n 结雪崩二极管,二维材料 通常采用光电晶体管的器件形式,利用二维材料与金 属电极之间的肖特基势垒产生电场形成载流子的雪 崩效应。

为了在红外波段响应,需要选取合适的窄带隙二 维材料,黑磷(Black phosphorus, BP)由于高载流子迁 移率以及窄带隙特性,非常有潜力应用于高增益红外 探测领域。2019年,J. Jia 等人报道了基于多层 BP 的 超灵敏雪崩光电探测器(见图 4(a))^[26],由于多层 BP 的 带隙约为 0.33 eV,因此其光电倍增过程所需要的电 场强度远小于其他二维材料。在外加电场较小时,电 流随电场强度线性增加,当外加电场超过临界值以 后,由于雪崩倍增机制光电流迅速增大到微安量级, 如图 4(b)和4(c)所示。对于二维材料探测器而言,它 们的普遍性问题在于二维材料的原子级厚度限制了 光吸收能力,表面等离激元结构由于局域场增强特 性可以用来显著提升二维材料光电探测器件的光吸 收^[27-29]。J.Jia 等人也采取这一策略,通过在 BP 雪崩

图 4 (a) 基于 BP 的雪崩光电探测器结构; (b) 不同电场强度下器件产生的光电流与波长的关系; (c) 不同电场强度下器件工作机制, 电场强度大 于临界电场时, 由于雪崩效应发生载流子倍增^[26]

Fig.4 (a) Schematic of BP avalanche photodetector; (b) Photocurrent vs wavelength for different electric fields; (c) Operation principles of BP device at different electric fields. When $E > E_{crit}$, carrier multiplication occurs due to the avalanche effect^[26]

探测器沟道上沉积金纳米颗粒,不仅提高了 BP 的光 吸收率,同时还利用金颗粒的 n 型电子掺杂作用降低 了器件的暗电流,将器件的信噪比提升了 3 倍。

除了传统的雪崩效应以外,二维材料独特的电子 输运特性为探索全新的雪崩机制原理性器件提供了 可能。2019年,南京大学 A. Gao等人首次在二维材 料原子级厚度异质结中发现了一种新型 p-n 结弹道 雪崩击穿机制,他们利用弹道输运过程中电荷几乎无 散射以及保持相位相干的量子特性,有望解决传统雪 崩器件需要强电场激发的问题,并突破传统器件的理 论噪声极限^[30]。器件的具体结构由二维 InSe/BP 垂直 异质结构成,响应波长可达到 4 µm 中红外波段,由于 弹道雪崩机制,器件的亚阈值摆幅仅为 0.25 mV/dev, 展现了低功耗的优异性能,同时器件的雪崩阈值电压 小于 1 V,显著降低了器件的噪声。该工作为实现高 性能红外雪崩光电探测器提供了新的研究思路。

3 新型高增益低维材料红外探测技术

3.1 photogating 增益机制

利用 photogating (光诱导栅压调控)效应也是实 现高增益灵敏探测的手段之一,不同于前面介绍的雪 崩增益依赖于强电场, photogating 效应通过光照引起 的电势调控晶体管沟道的电导率,也可以理解为在 场效应晶体管中产生了额外的栅压导致的光电响 应^[31-33],晶体管中俘获的载流子对沟道层产生强局域 作用,进而形成极大光增益(见图 5)。量子点场效应 晶体管单光子探测器即利用了这一机制,该类器件最 早是由剑桥大学 A.J.Shields 等人提出的^[34],器件由 GaAs 二维电子气场效应晶体管和 InAs 量子点浮栅结构组 成,通过 InAs 量子点高效俘获光生载流子,进而改变 沟道二维电子气的输运特性,该技术可以实现一至三 个光子的分辨。

图 5 基于 photogating 效应的晶体管光电响应增益机制^[33]

随着近年来低维材料研究热潮的兴起,基于 photogating效应的光电探测器再次引起了人们的广 泛关注。一方面,由于低维材料比表面积大,材料的 表面态或缺陷态都可以作为载流子的俘获中心,从而 调控沟道的电导率;另一方面,通过构建低维材料异 质结复合体系,利用其中一种材料作为高效的载流子 俘获中心,在界面载流子积累形成的内建电场作用 下,另一种材料中的电导能够被有效调控,从而产生 高增益。下文针对上述两种情形分别进行了描述。

3.2 基于单一低维材料的高增益探测器

2014年,中国科学院上海技术物理研究所Weida Hu 研究团队设计和制备了核壳结构的InAs纳米线, 利用壳层对光生载流子的俘获调制纳米线沟道的电 导,从而实现了可见-近红外波段的室温高增益光电 探测器,器件的基本结构和工作原理示意图如图 6(a)~ 6(b)所示^[35]。他们进一步制备了基于单根 CdS 纳米 线的场效应晶体管,并实现了 457 nm 波长下的室温 可分辨的单光子探测^[36],该工作不仅展示了基于 photogating 机制的核壳结构纳米线在室温单光子探测领域 的应用潜力,未来还有望通过改变半导体材料将响应 波长拓展到红外波段。

二维材料探测器中同样存在 photogating 效应, 在可见光波段已有关于 MoS₂、In₂Se₂ 等二维材料基 于 photogating 效应的高增益探测器报道,这类器件的 特点在于由于极高的响应度,器件能够对微弱光信号

图 6 (a) 室温高增益 InAs 纳米线光电探测器结构示意图和 (b) photogating 物理机制^[35]; (c) 碲烯中红外高增益光电探测器原子力显微镜图像和 不同波长下的光电流^[37]

Fig.6 (a) Schematic diagram and (b) photogating mechanism of InAs nanowire photodetector with high gain at room temperature^[35]; (c) AFM image of mid-infrared tellurene high-gain photodetector and the photocurrent at different incident wavelengths^[37]

(有效光功率为皮瓦量级)灵敏探测^[32-33, 38-39]。在红外 波段,Q. Guo 等人报道了基于 BP 的高增益室温探测 器^[40],器件响应波长达到 3.39 μm,他们分析了由于浅 杂质能级缺陷对光生载流子的俘获机制导致器件具 有近 10⁵ 的高增益。然而,由于存在 BP 在空气中不 稳定等问题,研究人员也在探寻其它窄带隙的二维材 料,最近 C. Shen 等人研制了碲烯中红外探测器件 (见 图 6(c)),在 3.39 μm 红外光入射条件下,基于 photogating 机制的器件增益为 3.15×10⁴,且碲烯的稳定性远高 于 BP,被认为在中红外高增益探测领域具有重要的 应用前景^[38]。

然而根据大多数基于单一低维材料的 photogating 光电探测器件实验报道结果,由于载流子被俘获 会延长过剩少子的寿命,因此高增益是以延迟了器件 的响应时间为代价获得的,只适用于追求高响应度而 不要求快速响应的应用场合。

3.3 基于低维材料复合体系的高增益探测器

通过构建不同低维材料的异质结复合体系,有望 在探测器中充分发挥 photogating 机制的高增益特性 的同时获得快速响应,量子点由于出色的光吸收能力 通常作为光敏层,二维材料则作为沟道层,此时器件 的探测波长由量子点的吸收波段决定,因此利用红外 吸收量子点可以拓展可见光二维材料探测器的响应 波段,即响应波长不再受到二维材料带隙的限制。近 年来,不断有零维-二维材料复合结构光电探测器被 提出^[41-43],包括零维 PbS-二维石墨烯、零维 HgTe-二 维 MoS,等,不仅探测波长可以拓展到中红外波段,而 且器件具有极高的增益和外量子效率。为了进一步提 升复合体系界面的电场和载流子收集效率, I. Nikiskiy 等人提出了在石墨烯光电晶体管垂直方向集成 PbS 量子点光电二极管^[44],器件的结构如图 7(a)~7(b)所 示,此时二极管特性决定了器件的响应速度,其3dB 带宽达到 1.5 kHz, 同时利用石墨烯优异的载流子输 运特性,器件的增益仍高达105,外量子效率超过70% (见图 7(c))。除了常见的胶体量子点以外,研究人员 也在不断尝试其他新型零维纳米结构,2017年,浙江 大学 Z. Ni 等人利用重掺杂 Si 量子点与石墨烯场效 应晶体管复合(见图 7(d)~7(f),在紫外-近红外波段基

- 图 7 胶体 PbS 量子点和石墨烯复合结构光电晶体管 (a) 光学显微镜图片和 (b) 结构示意图, 其中 ITO、PbS 和石墨烯在垂直方向形成光电二极 管结构; (c) 器件的响应度和外量子效率^[44]; Si 量子点-石墨烯复合结构 (d) 光电响应机制示意图以及器件的 (e) 响应度和 (f) 宽光谱光电 增益^[45]
- Fig.7 (a) Optical microscope image and (b) schematic of the phototransistor consisted of colloidal PbS QDs and graphene, in which ITO-PbS-graphene form photodiode in the vertical direction; (c) responsivity and EQE performance of the device^[44]; (d) Schematic of photoresponse mechanism, (e) responsivity and (f) gain of the hybrid photoransistor based on Si QDs and graphene^[45]

于 photogating 效应器件的光增益高达 10¹², 同时在中 红外波段利用重掺杂 Si 量子点的表面等离激元共振 增强机制提升了器件的响应度^[45]。上述研究工作为 研制兼具高增益和快速响应性能的红外探测器件提 供了新的途径, 未来有望实现室温工作的高效红外单 光子探测。

4 总结与展望

红外单光子探测器对于量子信息技术领域的发 展至关重要,半导体雪崩效应光电探测器是目前发展 最成熟的单光子探测器,基于雪崩倍增机制可以工作 在室温条件,并具有高带宽和高增益的优点。然而, 基于半导体的红外雪崩效应探测器由于后脉冲和噪 声等问题,其探测率、暗噪声等性能难以突破是其面 临的关键瓶颈问题。与此同时,人们也在探索基于新 型材料的高增益、超灵敏红外探测技术,低维材料,包 括一维纳米线和二维材料,由于它们巨大的比表面积 以及独特的能带结构等新颖的物理特性,被认为最有 潜力实现新一代高性能红外光电探测器。

近年来,人们围绕着低维材料的制备、器件设计 以及新型增益放大机制等方面开展了一系列研究工 作,为研制高增益、低成本、低功耗和集成化的室温 工作红外单光子探测器提供了新的可能。但不可否 认的是,基于低维材料的单光子探测技术发展仍不成 熟,大部分研究工作仅展示了器件的高增益特性及其 单光子探测理论可行性,离红外单光子探测实用化仍 有很远的距离,未来可从以下几方面加以关注:第一, 基于单一低维材料以及复合体系的高增益机理仍需 要进一步探索,例如通过结合微观多物理场表征手 段,从而阐明载流子的动力学过程,为构建低维材料 高增益红外探测器件结构提供理论依据。第二,针对 器件的红外单光子探测性能提升问题,需要在材料制 备、电学接触特性以及有源层与红外光相互作用的增 强等方面进行优化设计。第三,探测器与量子点等新 型单光子源的单片集成技术也是未来实现量子信息 系统芯片化和柔性化的重要研究方向。通过理论研 究的深入以及器件加工测试水平的提升,低维材料高 增益探测技术对于推动高性能红外单光子探测领域 的发展将发挥关键作用。

参考文献:

- Buller G S, Collins R J. Single-photon generation and detection [J]. *Measurement Science and Technology*, 2009, 21(1): 012002.
- [2] Chunnilall C J, Degiovanni I P, Kück S, et al. Metrology of single-photon sources and detectors: a review [J]. *Optical Engineering*, 2014, 53(8): 081910.
- [3] Zhang J, Itzler M A, Zbinden H, et al. Advances in InGaAs/InP single-photon detector systems for quantum communication [J]. *Light: Science & Applications*, 2015, 4(5): e286-e286.
- [4] Takai I, Matsubara H, Soga M, et al. Single-photon avalanche diode with enhanced NIR-sensitivity for automotive LIDAR systems [J]. *Sensors*, 2016, 16(4): 459.
- [5] Eisaman M D, Fan J, Migdall A, et al. Invited review article: Single-photon sources and detectors [J]. *Review of Scientific Instruments*, 2011, 82(7): 071101.
- [6] Tobin R, Halimi A, McCarthy A, et al. Three-dimensional single-photon imaging through obscurants [J]. *Optics Express*, 2019, 27(4): 4590-4611.
- [7] Hadfield R H. Single-photon detectors for optical quantum information applications [J]. *Nature Photonics*, 2009, 3(12): 696-705.
- [8] Shi Y, Zhu H, Yang X, et al. InP-based free running mode single photon avalanche photodiode [J]. *Infrared and Laser Engineering*, 2020, 49(1): 0103005. (in Chinese)
- [9] Bai P, Zhang Y H, Shen W Z. Infrared single photon detector based on optical up-converter at 1550 nm [J]. *Scientific Reports*, 2017, 7(1): 1-12.
- [10] Marsili F, Verma V B, Stern J A, et al. Detecting single infrared photons with 93% system efficiency [J]. *Nature Photonics*, 2013, 7(3): 210-214.
- [11] You Lixing. Status and prospect of superconducting nanowire single photon detection [J]. *Infrared and Laser Engineering*, 2018, 47(12): 1202001. (in Chinese)
- [12] Day P K, LeDuc H G, Mazin B A, et al. A broadband superconducting detector suitable for use in large arrays [J]. *Nature*, 2003, 425(6960): 817-821.
- [13] Guo W, Liu X, Wang Y, et al. Counting near infrared photons with microwave kinetic inductance detectors [J]. *Applied Physics Letters*, 2017, 110(21): 212601.
- [14] Namekata N, Sasamori S, Inoue S. 800 MHz single-photon detection at 1550 nm using an InGaAs/InP avalanche photodiode operated with a sine wave gating [J]. *Optics Express*, 2006,

14(21): 10043-10049.

- [15] Vines P, Kuzmenko K, Kirdoda J, et al. High performance planar germanium-on-silicon single-photon avalanche diode detectors [J]. *Nature Communications*, 2019, 10(1): 1-9.
- [16] Fang Y Q, Chen W, Ao T H, et al. InGaAs/InP single-photon detectors with 60% detection efficiency at 1550 nm [J]. *Review* of Scientific Instruments, 2020, 91(8): 083102.
- [17] Itzler M A, Jiang X, Entwistle M, et al. Advances in InGaAsPbased avalanche diode single photon detectors [J]. *Journal of Modern Optics*, 2011, 58(3-4): 174-200.
- [18] Hayden O, Agarwal R, Lieber C M. Nanoscale avalanche photodiodes for highly sensitive and spatially resolved photon detection [J]. *Nature Materials*, 2006, 5(5): 352-356.
- [19] Chuang L C, Sedgwick F G, Chen R, et al. GaAs-based nanoneedle light emitting diode and avalanche photodiode monolithically integrated on a silicon substrate [J]. *Nano Letters*, 2011, 11(2): 385-390.
- [20] Jain V, Heurlin M, Barrigon E, et al. InP/InAsP nanowire-based spatially separate absorption and multiplication avalanche photodetectors [J]. ACS Photonics, 2017, 4(11): 2693-2698.
- [21] Farrell A C, Meng X, Ren D, et al. InGaAs –GaAs nanowire avalanche photodiodes toward single-photon detection in freerunning mode [J]. *Nano Letters*, 2019, 19(1): 582-590.
- [22] Gibson S J, van Kasteren B, Tekcan B, et al. Tapered InP nanowire arrays for efficient broadband high-speed singlephoton detection [J]. *Nature Nanotechnology*, 2019, 14(5): 473-479.
- [23] Miao J, Wang C. Avalanche photodetectors based on twodimensional layered materials [J]. *Nano Research*, 2020: 1-11.
- [24] Lei S, Wen F, Ge L, et al. An atomically layered InSe avalanche photodetector [J]. *Nano Letters*, 2015, 15(5): 3048-3055.
- [25] Deng W, Chen X, Li Y, et al. Strain effect enhanced ultrasensitive MoS₂ nanoscroll avalanche photodetector [J]. *The Journal of Physical Chemistry Letters*, 2020, 11(11): 4490-4497.
- [26] Jia J, Jeon J, Park J H, et al. Avalanche carrier multiplication in multilayer black phosphorus and avalanche photodetector [J]. *Small*, 2019, 15(38): 1805352.
- [27] Wang J, Fang H, Wang X, et al. Recent progress on localized field enhanced two - dimensional material photodetectors from ultraviolet —visible to infrared [J]. *Small*, 2017, 13(35): 1700894.
- [28] Zhang X Y, Zhang T, Hu A, et al. Controllable plasmonic antennas with ultra narrow bandwidth based on silver nano-

flags [J]. Applied Physics Letters, 2012, 101(15): 153118.

- [29] Xiong M, Su D, Zhou H L, et al. Plasmonic enhanced midinfrared InAs/GaSb superlattice photodetectors with the hybrid mode for wavelength-selective detection [J]. *AIP Advances*, 2019, 9(8): 085121.
- [30] Gao A, Lai J, Wang Y, et al. Observation of ballistic avalanche phenomena in nanoscale vertical InSe/BP heterostructures [J]. *Nature Nanotechnology*, 2019, 14(3): 217-222.
- [31] Yang Q, Shen J, Wei X, et al. Recent progress on the mechanism and device structure of graphene-based infrared detectors [J]. *Infrared and Laser Engineering*, 2020, 49(1): 0103003. (in Chinese)
- [32] Fang H, Hu W. Photogating in low dimensional photodetectors [J]. *Advanced Science*, 2017, 4(12): 1700323.
- [33] Wu J Y, Chun Y T, Li S, et al. Broadband MoS₂ field-effect phototransistors: ultrasensitive visible-light photoresponse and negative infrared photoresponse [J]. *Advanced Materials*, 2018, 30(7): 1705880.
- [34] Shields A J, O'sullivan M P, Farrer I, et al. Detection of single photons using a field-effect transistor gated by a layer of quantum dots [J]. *Applied Physics Letters*, 2000, 76(25): 3673-3675.
- [35] Guo N, Hu W, Liao L, et al. Anomalous and highly efficient InAs nanowire phototransistors based on majority carrier transport at room temperature [J]. *Advanced Materials*, 2014, 26(48): 8203-8209.
- [36] Luo W, Weng Q, Long M, et al. Room-temperature singlephoton detector based on single nanowire [J]. *Nano Letters*, 2018, 18(9): 5439-5445.
- [37] Shen C, Liu Y, Wu J, et al. Tellurene photodetector with high gain and wide bandwidth [J]. ACS Nano, 2020, 14(1): 303-310.
- [38] Island J O, Blanter S I, Buscema M, et al. Gate controlled photocurrent generation mechanisms in high-gain In₂Se₃ phototransistors [J]. *Nano Letters*, 2015, 15(12): 7853-7858.
- [39] Li L, Wang W, Chai Y, et al. Few-layered PtS₂ phototransistor on h-BN with high gain [J]. *Advanced Functional Materials*, 2017, 27(27): 1701011.
- [40] Guo Q, Pospischil A, Bhuiyan M, et al. Black phosphorus midinfrared photodetectors with high gain [J]. *Nano Letters*, 2016, 16(7): 4648-4655.
- [41] Konstantatos G, Badioli M, Gaudreau L, et al. Hybrid graphene-quantum dot phototransistors with ultrahigh gain [J]. *Nature Nanotechnology*, 2012, 7(6): 363-368.
- [42] Huo N, Gupta S, Konstantatos G. MoS2-HgTe quantum dot

hybrid photodetectors beyond 2 μm [J]. *Advanced Materials*, 2017, 29(17): 1606576.

- [43] Hu Weida, Li Qing, Chen Xiaoshuang, et al. Recent progress on advanced infrared photodetectors[J]. *Acta Physica Sinica*, 2019, 68(12): 120701. (in Chinese)
- [44] Nikitskiy I, Goossens S, Kufer D, et al. Integrating an electrically active colloidal quantum dot photodiode with a

graphene phototransistor [J]. *Nature Communications*, 2016, 7(1): 1-8.

[45] Ni Z, Ma L, Du S, et al. Plasmonic silicon quantum dots enabled high-sensitivity ultrabroadband photodetection of graphenebased hybrid phototransistors [J]. ACS Nano, 2017, 11(10): 9854-9862.

第一作者简介: 吴静远 (1992-), 女, 讲师, 硕士生导师, 博士。2019 年毕业于东南大学电子科 学与工程学院, 获物理电子学博士学位, 2015~2017 年在英国剑桥大学先进光电子研究中心 (CAPE) 博士联合培养, 2019 年 10 月进入东华大学理学院工作。主要从事低维材料微纳光 电器件的设计、研制及其在光电探测等领域中的应用, 研究成果发表在 Advanced Materials、 ACS Applied Materials & Interfaces 等学术期刊上, 目前承担国家自然科学基金青年科学基 金、上海市青年科技英才扬帆计划等项目。Email: jywu@dhu.edu.cn